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Inferring Examinee Ability When Some Item Responses Are Missing

Abstract

The basic equations of item response theory (IRT) provide a

foundation for inferring examinees' abilities and items'

operating characteristics from observed responses. In practice,

though, examinees will usually not have provided a response to

every available item--for reasons that may or may not have been

intended by the test administrator, and that may or may not be

related to examinee ability. The mechanisms that produce

missingness must be taken into account if correct inferences are

to be drawn. Using concepts introduced by Rubin (1976), we

discuss the implications for ability and item parameter

estimation that are entailed by alternate test forms, targeted

testing, adaptive testing, time limits, and omitted responses.

Key words: Adaptive testing; Item response theory; Missing

data; Omitted responses; Targeted testing



Introduction

The capability to measure different examinees with different

test items is an oft-cited advantage of item response theory

(IRT). This option implies a problem of inference in the presence

of missing data, since an examinee may not have provided a

response to every item in the complete item set. Five types of

missingness are in fact encountered regularly in routine

applications of IRT:

Case 1: Alternate test forms. Two or more tests with similar

content but different items are often employed to minimize carry-

over effects (as in test-retest designs), reduce fatigue and

practice effects (by splitting a test into shorter subtests), or

avoid cheating behavior. A examinee is typically administered

one form selected at random.

Case-2: Targeted testing. Two or more tests with similar

content, but pitched at different levels of difficulty, can be

used to make testing more efficient when background information

(such as grade or courses taken) is available for deciding which

test to administer to each examinee.

Case 3: Adaptive testing. Testing can also be made more

efficient and less time-consuming if each item presented to an

examinee is selected on the basis of his responses up to that

point, and possibly background information as well.
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Case 4: Not-reached items. Under typical testing conditions,

some examinees will not reach the last few items on a test

because of the time limit.

Case 5: Omitted items. Even when an item has been presented to

an examinee and he has time to reach it, he will sometimes choose

not to respond.

When incomplete data of any of these types are encountered,

the IRT model that presumably accounts for the responses that are

observed, is embedded in a more encompassing model that determines

which responses will be observed and which will be missing. This

paper discusses the implications that missing responses hold for

likelihood and Bayesian inferences about examinee ability

parameters and item parameters, assuming an IRT model holds. When

can the process that causes missingness be ignored? When it

cannot be ignored, how can it be modeled? How can conventional

IRT methods for missing responses be evaluated in this framework?

The following section extends IRT notation to handle

missingness, using concepts and notation from Little and Rubin

(1987) and Rubin (1976). Next, Rubin's (1976) conditions for

when the missingness process can be ignored are reviewed. Each

of the five types of missingness listed above are then discussed

in some detail in the problem of inferring ability when item



parameters are known. This is followed by the extension to item

parameter estimation. A final section summarizes our results.

Background and Notation

At the heart of IRT is the model for the response to item j,

withitspossiblyvector-valuedparameter P .,from an examinee

with ability 0. The Rasch model for dichotomous items, for

example, posits

P(U.=u.10,b.)=exp[u.(0 - b.)]/[1 + exp(0 b.)) ,

J J J

whereu.--ldenotesacorrectresponseandu.=0 an incorrect one,

and 'b. is the difficulty parameter of item j. We assume IRT

functions that are twice differentiable, and interpret

P(U. = 110,0.) as the proportion of correct responses we would

expect to many items with 0 = pj from many examinees with that

value of O.

Under the usual assumption of local independence, the

conditional probability of the response vector U = (U1,...,Un)

for n items is obtained by the product rule:

P(U = u10,0) = R P(U. = u.10,0.) .

j=1 J J J

3
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It-is further assumed that if y denotes background information

about an examinee such as age, CPA, or courses taken, then

P(U = u1043,y) = P(U = u10,P) .

When there is no possibility of missing responses, (1) can

be interpreted as a likelihood function, say L(01u), once a

particular value u of U has been observed. Direct likelihood

inferences are based solely on relative values of L at different

values of 0. It might be said, for example, that the probability

of u is twice as high at 0' than at 0". The maximum likelihood

estimate (MLE), 0, is the value at which u has the highest

probability. Note that in direct likelihood inference, the MLE

concerns only the data that were actually observed.

The role of the MLE in sampling distribution inferences

concerns its distribution under repeated sampling of observations

with a fixed "true" parameter value. If n is large, the sampling

distribution of 0 as computed from repeated observations of U can

be approximated by a normal distribution with mean 0 and variance

2 l-

a2
1(01u) 1-1

=
[

2 j
ao

where 2(01u) = log L(01u). By considering the distribution of 0

over hypothetical draws from the sample space, sampling

distribution inferences involve datasets that could have been

observed, but were not.

4



Bayesian inferences are based on the posterior distribution

for 0 given u, or

p(01u) = K L(01u) p(0) , (2)

where K is a normalizing constant and p(0) conveys knowledge

about 8 before a value of U is observed. The posterior mean and

mode of 0 are sometimes taken as point estimates in IRT. The

posterior variance is approximated by a
2
when n is large. (This

is the variance of the posterior distribution for : induced by the

data actually observed, in contrast to the variance of an

estimator over hypothetical repeated observations).

In many applications of IRT, an examinee provides responses

to only a subset of the n items to which responses could have

been observed. The data thus consist of ci) the identification

of the subset of items to vhich responses are observed and (ii)

the responses to those items. The first inferential problem we

address is to estimate an individual examinee's 0 from this

extended observation, assuming that both the 1RT model and the

item parameters are known. To this end, we adapt notation from

Little and Rubin (1987) and Rubin (1976) in defining the

following terms:

o U = (U 1, ,
U
n

) is the (hypothetical) random vector of

responses to all items in the full item set.

5



o M = (M1,...,Mn) is an associated "missing-data indicator,"

witheachelementtalcingvaluesofOor1.1fm.=1, the

value of U. will be observed; if m. = 0, the value of U. will

be missing.

o V - (V .,V
n
) conveys the data that are actually observed:

V. = U. if m. = 1 but V. - * if m. = 0.
J J

An observed value of M, say m, effects a partition of U, u,

V, and v according to which elements are observed and which are

missing. That is, we may write U = (U.s 'U to distinguish the
obs)

missing and observed elements of U, respectively. Similarly, u -

and v = (v . ,v ). As with u and
(umi 'u )sobs, V (V mi 'V ),sobs mis obs

m, let v denote a realized value of V.

Example

An examinee is administered a two-item test. With each item

scored right or wrong (1 or 0), there are 2
2
= 4 possible

patLerns for U: (0,0), (0,1), (1,0), and (1,1). The second

response may be missing, however. With 1 representing "observed"

and 0 representing "missing," there are 4 conceivable patterns

for M, of which (1,0) and (1,1) can be realized. If the examinee

would have responded incorrectly to the first item and correctly

to the second, but the response for the second item is missing,

then u = (0,1), m = (1,0), and v = (0,*).

4
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Inferences must of course be based on the data that are

actually observed, namely realizations of V w ( Modeling
-uobs,m).

the hypothetical complete data vector (U,M)--even if there is no

intention of observing a response to every item--is a convenient

way to begin. It forces us to explicate our beliefs about the

relationships among ability, item response, and missingness--

exactly what is required for building a sensible model for V.

Recalling that p(u,m) can be written as p(m1u) p(u) or as p(ulm)

p(m), define the following densities:

o f
0
(u) is the density for all n responses. In this paper,

f (u) takes the form shown in (1), so by local independence

we can write f
0
(u) = f (u') f

0
(u") for any ordering and

partitioning of the items into (u',u")--including

(umis'uobs).

o g (mlu) is the probability that M takes the value m =
0

(m1,...,mn) given that U takes the value u = (u1,...,un),

with 0 being the (possibly vector-valued) parameter of the

missingness process. It is possible for 0 to be a component

of 0, in which case the value of 0 itself plays a role in

determining whether a response will be observed. In these

cases we shall sometimes write g(mlu,0,0) to emphasize the

dependence on 0.

7



o h
0
(ulm) is the probability that U takes the value u given

that M takes the value m.

o t (m) is the probability that M takes the value m. Again, 0
0

may be a component of 0.

Example (continued)

Suppose that the missingness process in the two-item example

initiated above can be described as follows: The second response

is observed whenever the first response is correct; the second

response will be observed with probability 0 if the first response

is incorrect. Then

1 if m=(1,0) and u=(1,0) or (1,1)

g (mlu) =

1-0 if m=(1,0) and u=(0,0) or (0,1)

0 if m=(1,1) and u=(0,0) or (0,1)

0 otherwise.

Whenever not all potential responses may be observed for any

reason--even if they all do turn out to be observed--the data are

v. To obtain the likelihood function, we start with the

likelihood for the (hypothetical) complete data (U,M), then

average over the missing responses umis:

8
/ 4



L(6,0(v) (O,0),"001 Ife(umisolobs)go(mlumis,uobs)dumis

where 6 takes the value 1 if a value (6,0) is in the parameter

space 0 and 0 if it isn't. This observed-data likelihood is a
00

weighted average over all complete-data likelihoods that have the

targeted responses to the observed items. The weights are

proportional to the probabilities of these potential response

patterns for the different values u
mis'

given m and u
obs

Using

local independence, we can bring the probability for the observed

responses outside the integral:

L(6,01v) = 6() f0(uobs)If0(umis)g0(mlumis'uobs)dumis (3)

Equivalently, using the alternative expression for p(u,m),

L(0,01v) 6(',.) t (m) jh (u . u 1m) du . . (4)
0 0 mis' obs mis

Appropriate likelihood inferences are based on relative values of

L(0,01v) at various values of (6,0), or at various values of 0

after eliminating 0 by conditioning or maximizing. Appropriate

Bayesian inferences are based on the posterior distribution

p(0,01v) cc 1.(8,01v) p(0,0) , (5)

where p(O,O) conveys prior knowledge about 0 and 0. Appropriate

sampling distribution maximum likelihood inferences concern the

9



A A

distribution of (0,0) from (3) or (4), over hypothetical repeated

observations of V for fixed

In general, then, the correct likelihood function involves a

nuisance parameter 0, and depends not on just the responses that

were observed, through fo(uobs), but on the responses that were

not observed, through f
0
(u
mis

) and g (lulu
mis

,u
obs

).
0

Example (continued)

With IRT for binary variables, the integral over u . that
Ins

appears in (3) is a summation over all possible response patterns

with u
obs

= uobs . In our two-item example with the first response

incorrect and the second response missing, the potential complete

patterns u are (0,1) and (0,0). Thus,

= 6[(0,0),000] f0(U1=0)

x (f
0
(U

2
=0) g

0
[M=(1,0)1U=(0,0)]

+ f
0
(U

2
=1) g (14--(1,0)1U=(0,1)1} .

0
(6) #

Conditions for Ignorability

Ignoring the missingness process when drawing inferences

about 0 means that rather than using the correct likelihood

16
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L(8,01v), using a facsimile of (1) as applied to uobs alone:

* ,

L (Olu
obs

) = 6(0,0
0

) f
0
(u
obs

)

(5(0
'

) 11 P(U. u.10,13.) . (7)
obs 3

In particular, direct likelihood inferences about 0 that ignore

the missingness process simply compare values of L
*

at various

values of O. Bayesian inferences that ignore the missingness

process start with an analogue of (2), a psuedo-posterior

distribution proportional to

* ,

L (Olu
obs

) p(0) . (8)

Sampling-distribution maximum likelihood inferences that

ignore the missingness process consider the distribution of 0 from

(7) over repeated samples of responses to the items for which

m.=1. This involves a different reference sample space--not the

sample space of v values, driven by (0,0), but a sample space of

u
obs

values for a fixed m, driven by O. (This reasoning is used

in survey sampling when the exact size of the sample is not known

before it is obtained. Even though the sample size N is a random

variable with its own distribution and parameters, standard errors

for 0 are typically computed with respect to repeated draws with

the observed sample size N, rather than with respect to repeated

draws of (U
obs'

N).)

11



It is a pleasant state of affairs when ignoring the

missingness process leads to the correct inferences about 0, since

(7) and (8) don't require the specification of g, h, or t, and

standard computing algorithms can be used. Depending on why the

missing responses were missing, however, these procedures need not

lead to the correct inferences. Rubin (1976, 1987) specifies

conditions under which a missingness process can be ignored under

sampling distribution, direct likelihood, and Bayesian inference.

They involve the concepts missing at random, missing completely at

random, and distinctness of parameters:

Definition I: Missing responses are missing at random (MAR) if

for each value of 0 and for all fixed values m and u
obs'

80(mlumis' u obs) mis
(Thistakes the same value for all u . .

definition of MAR applies to the missingness process in general,

as in Rubin, 1987, rather than a specific value of the missingness

variable, as in Rubin, 1976.)

Definition 2: Missing responses are missing completely at random

(MCAR) if for each value of 0 and for each fixed value m, g
0
(mlu)

takes the same value for all u.

Definition 3: The parameter 0 is distinct (D) from 0 if their

joint parameter space factors into a 0-space and a 0-space, and

when prior distributions are specified for 0 and 0, they are

independent.



Taken together, MCAR and D imply that the values of both the

observed and the missing responses are independent of the pattern

of missingness. MAR and D together imply that the values of the

missing responses are independent of the pattern of missingness,

conditional on the values of the observed responses. MCAR implies

MAR.

Example (continued)

In order to satisfy MCAR, it must be that for each value of 0

and any value of m, go(mlu) takes the same value for all u. In

our two-item example, however, g4,(M-(1,0)U=(1,1))=1 while

Except in the trivial case that
0 0

MCAR is not satisfied.

In order to satisfy MAR, it must be that for each value of 0

and any fixed values of m and u
obs

, g
0
(mlu

mis
,u

obs
) takes the same

valueforallvaluesofu_This condition is satisfied
mis

trivially whenever m=(1,1), since there are no missing

observations. It is also satisfied trivially in our example when

m-(0,1) or m-(0,0), since these missingness patterns have

probability zero for all u. The following equalities for m=(1,0)

complete the verification of MAR:

g
0
(M-(1,0)1U-(1,0)) = g

0
(M=(l,0)111=(l,1)) = 1

g
0
(M=(1,0)IU=(0,0)) = g

0
(M=(1,0)111-(0,1)) = 1-0 .

13
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We are now in a position to summarize Rubin's conclusions

regarding direct likelihood and Bayesian inference. First, a

more easily verified sufficient condition:

o When making direct-likelihood or Bayesian inferences about
0, it is appropriate to ignore the process that causes
missing data if missing data are missing at random and the
parameter of the missing data process is "distinct" from 0.
(Rubin, 1976, p. 581)

WhenMARissatisfied,gdoesnotdependonu.and can be
mis

brought out of the integral in (4), which then simply integrates

to one. If D is satisfied as well, the only dependence of

*
L(0,0Iv) on 0 is through L (Oluobs)

f0(uobsd

Under weaker conditions for ignorability, the integral need

not drop out as it does under MAR, but its value does not depend

on 0. Necessary and sufficient conditions are as follows:

o Suppose L (flu ) > 0 for
for 0 ignoring°ge process
correct for all 0 e 0 if

0(b) for each 0 e 0
0'

all 0 E 04. All likelihood ratios
that causes missing data are
and only if (a)0 =0 x0 and

00 0 0

-

(g (mlu . ,u dm u 0 0]E
u . 0 mis obs ' obs" (9)

takes the same positive value for all 0. (From Rubin, 1976,
Theorem 7.2.)

14
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o The posterior distribution of 8 ignoring the process that
causes missing data equals the correct posterior distribution
of 0 if and only if

Or

E [g ()du . ,u u 0)
0,u . 0 ryas obs ' obs"

mis

IlgO(mlumis'uobs)
p(umis10) p(010) dOdumis ,

takes a constant positive value. (From Rubin, 1976,

Theorem 8.2.)

Example (continued)

Equation 6 gives the complete-data likelihood for the

observed data v = (0,*), namely L(0,01V = (0,*)). When does the

psuedo-likelihood L
*
(0IU

1
-0) yield the same direct likelihood

inferences about 8? For this to happen, it must first hold that

the 0 and 0 sample spaces are distinct; it cannot be, for

instance, that the observed pattern of missingness could occur for

some values of 0 but not for others. Second, the following term

that appears in (6) must be constant for all values of 0:

f (U =0) g [141-(1.,0)111=(0,0)] + f (U -l) g [M-G,0)1U-(0,l)] .

0 2 0 0 2 0

15



MAR would mean that go[M=(1,0)111=u] is constant for all u, in

which case the expression simplifies to

[f (U
2
=0) + f

0
(1J2 -1)] g

0
[M-(1,0)] ;

then, since the sum in brackets is one, simply to the constant

value go[M=(1,0)]. When this happens, the sufficient condition

for ignorability is satisfied. But even if go[M=(1,0)IU=u] is not

constant over u, the entire expression can be constant for 0 if

the variations in f and g over 0 cancel each other out. For

example, it could be that 0 = 0 and, for u2 - 0,1,

-1

0
[M=(l,0)1U-(0,u2)] [f9(U2=u2)] .

As we shall see in the case of intentional omissions, such

constraints are not generally plausible in the context of IRT.

When ignorability under direct likelihood inference holds for

a given missingness process--as occurs when MAR is satisfied--the

correct value of 0 is identified as the MLE. The usual sampling-
A

distribution interpretation of 8 and a
2

may or may not be

justified. (Recall that if the sampling interpretation is to be

justified at all, it will be with respect to repeated response
A

sampling with m fixed at m. The variance of 9, for example, may

be quite different in this frame of reference from its variance

under repeated samples of (uobs,m).)

16 0 1
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First, a sufficient condition:

o When making sampling-distribution inferences about statistics
T(v), it is appropriate to ignore the process that causes
missing data if missing data are missing completely at random
and the parameter of the missing data process is "distinct"
from 0. (Little and Rubin, 1987, p. 14)

-
Under these conditions, p(U=u,M=mI0,0) = fo(u).go(m) with 0 and 0

distinct, and v may be thought of as the outcome of a two-stage

experiment: 0 determines m in the first stage and 0 determines

u
obs

in the second. An experimenter looking at the results of the

second stage has the same information about 0 as an experimenter

who has performed that latter experiment only with the value m

predetermined.

A necessary and sufficient condition for ignorability for

sampling inferences about a generic statistic T(v), based on

Rubin's (1976) Theorem 6.2, is as follows:

o The sampling distribution of T(v) under f4 calculated by
ignoring the process that causes missing aata equals the
correct conditional sampling distribution of T(v) given
m under under f

0
and g if and only if for each fixed

0
value of m,

17



Eu [gA(mlu)m,uobs,0,0] = Eu[go(mlu)fm,0,0] > 0 .

mis

Equivalently, the probability of each missingness pattern must not

depend on the values of the responses that are observed; for each

fixed m and any u' and u" it must be true that
obs obs'

Pr(M-miU
bs

-u'obs" 0) Pr(M=m1U
obs

=uobs"" 0) .

o

This condition is implied by Rubin's (1976) slightly stronger

"observed at random." Unless it holds, (u
obs'

m) does not admit to

a decomposition into a sequence of independent experiments because

the value of U
obs

plays a role in determining M, aria the

conditional frame of reference is not appropriate.

Inferences about Examinee Ability

The following sections address in turn the common types of

missingness in IRT that were listed in the introduction, in the

problem of drawing inferences about 0 when 0 is known. In each

case, we consider whether the conditions for ignoring missingness

are plausible, and, when they are not, discuss how the

missingness process might be modeled so that inferences can be

drawn.

Case 1: Alternate test forms

By "alternate test forms," we mean tests whose items all fit

the same IRT model, and which provide information sufficiently

18
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similar that the test administrator is indifferent as to which

form any particular examinee is presented. The form an examinee

receives will depend a random process such as a coin flip or a

form-spiralling scheme. The common practice in IRT applications

with alternate test forms is to base inferences about 0 on

L (01u
obs

).

The use of K alternate test forms implies that only K

missingness patterns, m . m.
K
,...m

K'
can occur, where all the

elements of m
k

are zero except those that correspond to the items

that appear in Form k. Denote their respective probabilities by

0
k

P(M-111
k
). Assuming the IRT model means that fo(U) is as given

in (1); that is, we assume that item responses would be governed

by 0 alone, regardless of which items would be presented. Even

though the items of only one form will actually be presented, it

is possible to express our assumptions about the connection

between the (hypothetical) values of complete response pattern and

the probability of the missingness pattern as follows:

°1(
g (lulu) =
0

0

for all u if m-mk; i.e., Form k

otherwise.

Since the values of g do not depend on u, MCAR, and therefore

MAR, are satisfied. Verifying D for likelihood inference requires

that all values of 0 are possible with all possible values of 0;

they are. Verifying D for Bayesian inference requires that prior

beliefs about 0 and 0 be independent; this is eminently reasonable

19



as well. Having satisfied the sufficient conditions MCAR and D,

we conclude that the missingness caused by the random

administration of alternate test forms is ignorable under direct

likelihood and Bayesian inference, and under sampling distribution

interpretations of 0. Common practice is therefore justified.

Case 2: Targeted Testing

Targeted testing also involves multiple test forms, but ones

in which the distributions of item difficulty differ from form to

form. Exploiting the fact that estimates of 0 are more precise

when an examinee is administered items with difficulties near 0,

targeted testing uses background information y about an examinee

to select a test form that will probably be more informative about

him than other forms. For example, an easy form and a hard form

might be constructed from a set of n items calibrated together

under the same IRT model, then the easy form could be given to

first graders and the hard form to second graders.

As in Case 1, the existence of K forms implies that only K

patterns of M, namely ml, mK, can be realized. The

parameter of the missingness process has values 0
k
(y), which

indicate the probability that an examinee with background

variable y will be administered Form k. For at least one k and

two values y' and y", Ok(y') Ok(y"); this happens when p(Oly')

p(01Y"), and the difficulty of Form k is better suited to the

typical examinee with one value of y than the other. If we denote

the easy and hard corms in the two-form example mentioned above as

20 0 G
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1 and 2, and let y denote grade level (1 or 2), then

g (M-m IU=u
'

y) = 0
k
(y) for all u, with

0 k

1 if y 1 and k 1

0 if y 1 and k - 2

0k(y) P(m=m0Y)
0 if y - 2 and k = 1

1 if y - 2 and k - 2 .

Because g does not depend on u, MCAR is satisfied. Assuming

that all values of 0 are possible at all values of y--even if

they are more likely for some values of y than others--

distinctness as required for direct likelihood inference is also

satisfied. The values of maximum likelihood estimates of 0 from

,

L
*
(Olu

obs
) are therefore the correct values under targeted

testing. This is all that matters for direct likelihood

interpretation of the MLE. Sampling-distribution interpretations

are also appropriate, with respect to repeated administrations of

the form that actually was administered.

Distinctness as required for Bayesian inference is not

satisfied. Prior beliefs about 0 and 0 are associated through y,

so p(0,0) p(0) p(0). Intuitively, knowing which form an

examinee was administered under targeted testing is a source of

information about 0 since form selection depends on prior

knowledge about 0 through y. This knowledge must be taken into

account in Bayesian inference. It is true, however, that p(0,0Iy)

p(0Iy) p(0Iy). Bayes-distinctness is satisfied conditional on
(-)

21



y, and the missingness process can be ignored conditional on y.

Thus, the correct Bayesian inferences under targeted testing are

* * ,

obtained with L
,

obs
) p(Oly), but generally not with L (klu

obs
)

p(0).

Case 3: Adaptive Testing

As mentioned for Case 2, IRT measurement can be made more

efficient by presenting an examinee with items that are

informative in the neighborhood of his B. Adaptive testing uses

information from an examinee's preceding responses, and possibly

from from his background variables y as well, to select each next

item to administer. As responses accumulate, more is known about

8 and successive item selections are more accurately targeted.

The datum observed in adaptive testing is a sequence of nobs

(<n) ordered pairs, S =
Uobs(l))'''' '(/nobs'Uobs(nobs)))'

where I
k

identifies the k'th item administered and U
obs(k)

is the

response to that item. Define the partial response sequence Sk as

the first k ordered pairs in S, with the null sequence so

representing the status as the test begins. Augment the set of n

items with the fictitious Item 0, the selection of which

corresponds to a decision to terminate testing. It can be

written as the nobs+l'st item in the test, although no response

is associated with it.

A test administrator defines an adaptive test design by

specifying for all items j, all realizable partial response

sequences sk, and all valu-s of y, the probabilities 0(j,sk,y)



that item j will be selected as the k+1'st test item, after

observing the partial response sequence sk from an examinee with

Y=y. The dependence of item selection probabilities upon y allows

for a hard item to be the first one presented to a high school

graduate, say, but an easy one to be first for a nongraduate.

Item selection probabilities in designs that do not use y can be

writtz,n simply as 0(j,sk). We begin by considering designs of

this latter type.

One example of an adaptive testing design is Bayesian

minimum variance item selection (Owen, 1975). In its pure form,

the item that minimizes the expected posterior variance of 0,

using the current posterior distribution p(Olsk), is chosen as the

k+15t item with probability one. To reduce the exposure of more

informative items, positive probabilities may instead be assigned

to several fairly informative items. Typically, testing continues

until either a desired level of precision is reached, or a

predetermined number of items has been administered.

A second example of an adaptive testing design is the two-

item example employed earlier in this paper. Its definition of g

corresponds to administering the first item to all examinees, and

with probability 0, the second item to some of the examinees who

answered the first item incorrectly.

In adaptive testing, the probability of observing s from an

examinee with ability 0 can be built up sequentially. The

probability of selection for the first item is 0(i1,s0). The

probability of response u
obs(1)

to item i
1

is given by the IRT

23
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model as f
0
(u
obs(1)

)--by conditional independence, a value that

does not depend on the fact that this item happened to have been

presented first. The conditional probability of selection for the

second item given sl is gi2,s1)--a value independent of O. The

probability of the corresponding response
is f9(uobs(2))' a

value

independent of the identification of, and the response to, the

first item. Continuing in this manner until it is determined to

stop testing, with probability 0(0,$), we obtain

nobs+1 nobs

P(sIO) n cb(iicsk-1) I' fo(uobs(k))
k=1 k=1

-

The likelihood function induced by the observation of s is thus

- nobs+1 - - -* ,

L(Ols) = II gi
k
,s
k-1

) L (Olu
obs

) .

Observe that...

_

k=1

1. sconveysthevalueofnEm.=1 if ik = j for some k,
3

1<k<nobs;otherwise,m.=0 .
3

2. s conveys the value of uobs, namely the responses to the

items administered during the course of the test.

30
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3. L factors into two products, the first of which depends on

, uobs'
and m, and the second of which--namely L

*
(0Iu

obs
)

41

--depends on 0 and uobs.

4. If s' and s" imply the same m and uobs, then L(Ols') a

L(OIs").

Points 3 and 4 justify the use of L
*
(0Iu

obs
) for direct

likelihood inference. It may be instructive nonetheless to verify

the satisfaction of MAR. Now P(M-m,U=u), or the probability of

the hypothetical complete observation (m,u), is the probability of

observing a response sequence s that yields the targeted m and

u
obs'

times the probability that the unobserved responses u .

!pis

also take the targeted values. Defining T Is: M=m n U
obs

=u
obs

)

as the set of response sequences that present the targeted items

and have the targeted responses to them, we have

P(M=m,U=u) = P(sET) P(Umis=umis)

nobs+1
= E R 0(i

k
,s
k-1

) n f
0
(u

obs(k)
)( n f

0
(u
mis(k)

))

T k obs mis

nobs+1

n 0(ik
,s
k-1

))Ilf(u.)
j

T k j=1
0
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nobs+1

(b(ik'sk-1)) P(Uu)
T . k

But then

g (mlu) = P(M=m,U=u)/P(U=u)

nobs+1
E H

T k

a value that does not depend on u
mis'

as required for MAR. This

argument also holds when 0 depends on y. (QED)

MAR and distinct parameter spaces are sufficient for

ignorability of the adaptive-testing missingness mechanism under

direct likelihood inference. Ignorability holds under Bayesian

inference if, in addition, the prior distributions for 0 and 0 are

independent. As with targeted testing, this latter condition

fails if for some y' and y" for which p(Oly') 0 p(Oly"), there

exist j and s such that 0(j,s,y') 0 0(j,s,y"). When this is so,

Bayesian inference demands the use of p(Oly) rather than p(0) in

* ,

conjunction with L (Olu
obs

).

Even though ignorability under direct likelihood inference

means that L yields the correct maximizing value from a given
A

observation, sampling-distribution interpretation of the MLE 0 is

26
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not justified in general. To see this, recall that the necessary

condition for sampling-distribution ignorability requires that for

each fixed m and any u' and u"
obs obs'

Pr(M=mIU
b

=u'obs"0 0) Pr(M-mIU
obs "-u" 8 0) .os obs

This would require that the probability of any given missingness

pattern be the same no matter what values the responses took. But

since by definition adaptive tests produce missingness patterns as

a function of the response values that are observed, only a

degenerate adaptive testing scheme could satisfy this condition.

Concluding that the item selection mechanism is not ignorable

for sampling distribution inference means that the correct

sampling distribution for 0 must be calculated with respect to

repeated administrations of the entire adaptive test. While

general theory does not relate its variance in this frame of

reference to the second derivative of L , the latter may be a

reasonable approximation of the former under particular adaptive

test designs. Whether this is so must be determined individually

for each adaptive test design, analytically in simple cases but by

simulation in more realistic cases.

Case 4: Not-Reached Items

IRT is intended for "power" tests, or those in which an

examinee's chances of responding correctly would not differ

appreciably if the time limit were more generous. Time limits are

27 -1



typically chosen to allow most examinees to respond to all items,

but a few examinees won't have time to answer all of them. This

section concerns the items that an examinee does not reach. It

assumes the examinee has not interacted with the item--e.g., he

has not seen what the items at the end of the test ask, and

decided to work instead on the ones he has seen at the beginning

of the test.

It is common practice to identify not-reached items by

working from the end of an examinee's response string toward the

beginning, taking unanswered items as not-reached until an answer

is encountered. Unanswered items preceding this last answered

item are taken as intentional omissions, and will be considered

in the next section. Concentrating on nonresponse due to not-

reached only, and limiting our attention to examinees who have

reached at least the first the item, we must address n patterns of

missingness: for 2 = 0,...,n-1, let ml denote the string of n-.2

l's followed by .2 O's. That is, ml is the missingness pattern of

an examinee that has not reached the last .2 items.

Checking ignorability. We continue to assume that a common

IRT model holds for the responses of items reached
'

u
obs'

and

not-reached, u . . This assumption is crucial for applying IRT
ins

models to data with not-reached items, and two ways of checking it

will be discussed at the end of the section. When it does hold,

the missingness process is characterized by the examinee speed

parameter 0 = (00,...,0n-l) of a multinomial variable, where 01

is the probability that missingness pattern mi will be observed--
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i.e., that the last / items will not be reached. Under this

formulation, the probability of the complete observation (m,u) is

obtained as

p(m,uI8,0) = p(mI0) II p(u.I0) ;

MCAR (and therefore MAR) holds. The probability of v is

13(17194) p(mk) p(uobs1°) p(umis16) dumis

p(m) p(uoP)bs
(12)

If, in addition to MCAR, all values of 0 are possible at all

values of 0--even if some are more likely than others--the

not-reached missingness process is ignorable with respect to

direct likelihood inference. That is, direct likelihood inference

about 0 in the presence of not-reached items can be based on

,

L
*
(Olu

obs
). Sampling-distribution inferences about 0 from 0 are

also appropriate. They pertain to repeated sampling of responses

to the items that were reached, and enjoy the asymptotic sampling

properties of MLEs if the number of items reached is large.

For ignorability to hold under Bayesian inference, it is

necessary in addition to MAR that p(0,0) p(8) p(0); that is,

that "speed" and "ability" are independent. Empirical evidence

suggests that this is not generally true. Van den Wollenberg

(1979), for example, reports significant positive correlations

between percent-correct scores on the first eleven items (which

29



were reached by all examinees) and the total number of items

reached, in four of six intelligence tests in the ISI battery

(Snijders, Souren, and Welten, 1963). Bayesian inference about

0 would take this relationship into account by using the correct

posterior distribution

p(Olv) a J L(0,01v) p(0,0)

,

= f L (Oluobs) L(01m)p(010) dO p(0)

L
(Oluobs) p(0) I L(I 0m) p(010) dO

* ,

a L (Oluobs) p(Olm) .

Checking the IRT model. .Verifying MCAR for not-reached items

required assuming that the responses that would have been

observed, had those items been reached, follow the same IRT model

as those that were reached. We now describe two ways of checking

this assumption, one using only the response data v that are

normally observed, the other requiring the researcher to discover

not-reached responses in a supplemental data-gathering effort.



A necessary condition for an IRT model to hold in the

presence of not-reached items, is that the same IRT model hold

for reached items among examinees who have reached different

numbers of items. Let u
obs

be the observed responses to items

thatarereachedinasarvleoftlexaminees,andletnobs.be the
1

muriberofitemsexamineeireaches.Let.be the parameter(s) ofpj

item j. The marginal probability of uobs under the hypothesis

that item parameters are invariant over groups of examinees with

different missingness patterns is

nobsi

PA(uobs) =llfn
P(u..18,#.) p(O(mi) dO . (13)

i j=1

Viewing (13) as a likelihood function and maximizing with-respect

to pi, ..,p
n

yields the value LA.

An alternative hypothesis is that item parameters vary over

not-reached groups. We can estimate n-j+1 different item

parameters for item j, where t3ii2 applies to those examinees who

have reached n-.2 items. For example, Item 3 will have parameters

for groups who reached n, n-1, ..., 4, and 3 items. The marginal

probability of u
obs

under this hypothesis is

nobs.
1

p
B
(u
obs

) =nf n p(u..10,0.
i j-1

ij jolobs.) P
(Olmi) dB ,

1
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which leads to the maximizing likelihood value L
B

. In large

samples, -2 log(LA/LB) is approximately chi-square with n(n 1)/2

degrees of freedom when the null hypothesis is true.

Van den Wollenberg (1979) provides empirical evidence that

the "item parameter invariance" with respect to not-reached groups

is often, but not always, tenable. Applying his own

goodness-of-fit indices rather than the likelihood ratio

suggested above, he verified this type of invariance in five of

the six ISI tests.

A second way of studying the IRT assumption in the presence

of not-reached items begins by finding out what the responses to

the not-reached items would have been. This can be accomplished

with paper-and-pencil tests by allowing a sample of examinees to

continue beyond the usual time limit until they have answered

every item, but using a different colored pencil after the usual

limit. Of the total of n items, then, examinee i will have

responded to the first nobs
i
under the normal time limits and the

remaining nmis
i
- n - nobs

i
thereafter. Under the null

hypothesis of an invariant IRT model across reached and not-

reached items, the marginal probability of the completed response

matrix u - (u . ,u ) under the null hypothesis is
mis obs

p (u ) -ilf 1 p(u..10,P.) p(Olmi) dO .

C obs
1 j
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Alternatively, we can fit an IRT model that allows both the item

parameters and examinee parameters to differ before and after the

time limit. Each item except the first can have two parameters,

and °L
whenever some examine2s answered before the

j,mis obs'

time limit and some answered it after; each examinee can two

abilities, 0 . and 0 obs . The resulting marginal probability is
mis

nobs.
1

p
D
(u

obs
) =nfj[ II p(u

ij
le
obs

,fi
Lobs.

)]

j=1

nmis.

p(u..I0 , )1p . p(0 ,0 ) dO dO .ijmis j,m1s..obs mis obs mis
1

In large samples, -2 log(Lc/LD) is approximately chi-square under

the null hypothesis, with degrees of freedom equal to the number

of items with two parameters appearing in (14), plus the number

of additional parameters estimated for the examinee parameter

distribution 1(0 obs
,0 .

ins
) over those required for p(0).

Case 5: Omitted Responses

A missing response is an intentional omission when the

examinee is administered the item, has time to appraise its

content, and decides for his own reasons not to make a response.
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After showing that such omissions can't generally be considered

ignorable, we discuss a number of ways to deal with them.

Omitting behavior. Test scores T(v) are assigned to

patterns of rights, wrongs, and omits for the purposes of

comparing or selecting examinees. Assuming that a correct

response to an item gives a higher value of T than an incorrect

response and that an examinee wants to obtain a high score, he

will make responses he believes are correct. How he will respond

to an item about which he is unsure depends at least partly on

how the test will be scored (Sabers and Feldt, 1968).

Formula scores, for example, take the form

T(v) = R(v) X W(v) ,

where R(v) and W(v) are counts of right and wrong responses and X

is a constant selected by the test administrator. Setting X = 0

gives number-right scores; X = 1 gives right-minus-wrong scores;

for multiple choice items with A alternatives, X = 1/(A-1) gives

the familiar "corrected-for-guessing" scores. The examinee

maximizes his expected score by answering items for which he

thinks his chances of being correct are at least X/(1 + X). In

particular, he should answer every item under number-right

scoring, and those for which he thinks his chances are at least c

- 1/A under corrected-for-guessing scoring. Some examinees either

do not use this strategy, or make inaccurate assessments of their
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chances. Analyzing responses to items that examinees originally

omitted under right-minus-wrong scoring, Sherriffs and Boomer

(1954) did find about half, or X/(1 - X), the omitted responses

would have been correct among examinees who scored low on a

risk-aversion scale, but nearly two-thirds would have been correct

among examinees with high risk-aversion scores.

The examinee's perceived probabilities of correct response

must be distinguished from the probabilities of the IRT model.

IRT gives the proportion of correct response to Item j from

examinees with ability 0, but each of these examinees may have a

different idea of his own chances. They may differ in the

ft

accuracy of their estimates and their confidence about them, and

their perceived probabilities need not average to the IRT

probability. Observing whether an examinee omits an item merely

tells us somethingaboutwhathethinksu.would be.

Are omits ignorable? To see that the assumptions needed for

ignorability are not generally plausible, we examinee the case in

which n = 1; i.e., a single item. MAR simplifies to go(mIU=0)

g (mIU=l), meaning that an omit is just as likely if the response
0

would have been correct as if it would have been incorrect. But

since examinees tend to answer items they feel are correct, MAR

implies the unappealing assumption that their perceptions of

correctness are independent of actual correctness.

MAR (along with D) is merely sufficient for ignorability,

however, and ignorability can hold when MAR does not. For a

single item, the necessary condition for ignorability under
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likelihood inference given in (9) requires that for each value of

0, the expression

g (M=01U=0) f
0
(U=0) + g (M=01U=1) f

0
(U=1) (15)

0 0

take the same value for all O. This is the just the probability

that the item will be omitted. That its value remains constant as

0 increases without limit flouts intuition, since we'd expect

examinees whose high abilities virtually assure a correct response

to be aware of their high chances, and respond rather than omit.

This conjecture is borne out in empirical studies such as

Stocking, Eignor, and Cook (1988) that show markedly lower rates

of omission from examinees with high (corrected-for-guessing)

scores than from examinees with low scores.

Since ignorability is not satisfied for direct likelihood

inference, L does not generally yield the correct MLE, and

sampling distribution inferences based on the resulting value are

inappropriate. The requirements for ignorability under Bayesian

inference are the same as those for direct likelihood inference

except that they must apply when averaged over 0 rather than for

each particular value; ignorability is thus implausible there too.

Lord (1974) argues against ignoring omits under maximum

likelihood scoring, saying that the examinee who knew we planned

* ,

to use the MLE from L (0Iu
obs

) as a score would omit all items

except those for which he was certain his response would be

36
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correct. This plausible argument also presumes a relationship

between actual and examinee-perceived item correctness.

Filling in the blanks. Lord (1974) suggested that omits on

multiple-choice items under guessing-corrected scoring can be

handled with standard IRT estimation routines if they are treated

as as fractionally correct, with value c. He assumed "rational"

omitting behavior: examinees omit items only if their chances of

respondingcorrectlywouldhavabeenc,sothatyylK=0) = c

for all items and all 0. Omitting decisions are also assumed to

be independent from one item to the next, given 8 and 0. In a

natural extension of conditional independence of item responses

given 0, we assume "extended local independence," or conditional

independence of item responses and missingness given 0 and 0:

P(U=u,M=mI0,0) = H P(U.-u.,M.=m10,0)
J J J

Under these assumptions, the complete-data likelihood takes

the following form:

L(0,0Iu,m) = H p(u.,m.I0,0)
J J

n - -

= H f (u.)g(m.lu.,0,4)0j
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-

n U. 1-u. n
=rip.m.J.(0) II g(m.iu.,0,0)

j
J

Qj = 1 P.(0)]
j

Lu(Olu) Lm1u(0,01(mlu)) .

The complete-data likelihood thus factors into two terms, with Lu

being the IRT-based probability of item responses and Lmiu the

probability of the missingness pattern given the response

pattern. Both depend on 0. Were u and m both fully observed,

the usual MLE based on L
u

would be a conditional MLE, foregoing

the additional information conveyed by Liniu but avoiding the

nuisance parameter 0. One would proceed by finding the maximizing

value of the log likelihood

n -
2...-E1.1.10g13.(0.1-(1 -1.1.)log Q.(0)

.

u . j 3 J J
3

The same conditional-estimation strategy can be applied to

the observed data v (u
obs

,m), by maximizing the conditional

expectation of L
u'

or E[L
u
(Olu

mis
,u
obs

)1(u
obs

,m)]. Finding the

maximizing 0 for E(Lu) by Dempster, Laird, and Rubin's (1977) EM
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algorithm requires finding the maximizing 0 for the expectation of

given uobs, m, and a provisional estimate 0
0

; that is, of

t

F(010
0

) lu(91umis'uobs) p(umisluobs,111,9

o
) dumis

11. lo
obs

g P.(0) 11 Q.) log -(0)
3

+ u. log P + (l-u.)Q.(0)] p(u . lu ,m,0=0°) du . .

J mis obs mis
mis

(16)

But under Lord's assumptions,

p(u
mis

(u
obs

,m,0 = 0°) = h (u.lm. = 0)
0 3mis

U. 1-u.

= n C 3(1 c)

mis

0
a value that doesn't depend on 0 or 0 . Substituting this

expression into the second term of (16), the integral simplifies

to
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F(010°)--Eu.log1).(0)+(1.-u.)log Q.(0)
obs

+EclogP.(0) + (1 - c) log Q.(0) .

mis

(17)

This is equivalent to the log of Lord's Equation 4, the

psuedo-likelihoodobtainedbyusingu.c in the complete-data

likelihoodwheneverm.---0. Equation (17) does not depend on 0
0

,

so the EM algorithm comprises only a single cycle. Maxima of (17)

are maxima of E(L
u
). A global maximum is assured if the

complete-data probability belongs to the exponential family, as is

the case with the Rasch model.

Lord (1974) points out that the criterion function obtained

by replacing omits with fractionally-correct responses is not the

likelihood function induced by the observation. We have shown,

however, that the resulting estimate of 0 maximizes what might be

called a "marginal conditional" likelihood function, allowing one

to apply standard results from the theory of maximum likelihood

estimation, such as consistency--in this context, as the number of

items not omitted increases.

The foregoing analysis yields insight into other treatments

ofomitsthatimputevaluesforu..Supplying random responses

that are correct with probability c provides a crude numerical

evaluation of (16), leading to a maximizing value whose
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expectation is the value obtained when the integration is carried

out in closed form as in (17). This practice is justified by the

same assumptions as Lord's (1974) approach, but sacrifices

accuracy for convenience. Supplying incorrect responses for

omits leads to a "marginal conditional" MLE for 0 under the

assumption that responses to omitted items would surely have been

incorrect. This may be reasonable for open-ended items, but it is

not plausible for multiple-choice items for which even the least

able examinees have nontrivial probabilities of success. In these

cases, supplying incorrect responses for omits would bias

estimates of 9 downward.

Lord addressed "rational" omitting behavior, in that the

expectation of correctness for an omitted response is always c,

the value associated with the optimal omitting strategy. As we

have noted however, studies of responses to items originally

omitted show that not all examinees behave in this manner. The

tendency to omit when probabilities of success may be higher than

c can be associated with personality characteristics, demographic

variables, and level of ability. This approach biases estimates

of 8 downward for risk-aversive examinees. We now discuss how

such dependencies can be taken into account, although it is by no

means certain that this should be done; to do so effectively

adjusts scores upward or downward in accordance with examinee

background characteristics, which may be objectionable on the

grounds of fairness. Assuming rational omitting behavior in

scoring rules, and making the rules and optimal strategies as
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clear as possible to examinees, may be preferable when test

scores are used to make sensitive placement or selection

decisions.

Modeling empirical rather than ideal omitting behavior

requires a study like that of Sherriffs and Boomer's (1954),

where examinees are first administered a test under standard

conditions, then later asked what their responses to the items

they omitted would have been. From these data it is possible to

calculate proportions of omits that would have been correct as a

function of the items and examinee characteristics--possibly

including 0. If 0 is not included, empirical estimates

h(U.=11M.=(),y) are employed in place of c in (16). This takes
J J

into account possible differences in rates of omitted correct

response from one item to the next--some higher than c, some

lower--or among examinees with different demographic or measured

psychological characteristics. If 0 is included, then estimates

of 0 employing h0(Uj=liMj=0,y) must be calculated iteratively.

The values h0(Uj=11Mj=0,y)10.40 replace c in (17) for each

missing response, and an improved estimate 0
1

is obtained via

maximum likelihood. This must then be used to produce an improved

estimate of the expectation of each missing response,

ho(Uj=1 IM.FO,Y)10=01- From these and u
obs

yet another estimate

0
2
will be obtained. The process is repeated until convergence

occurs. The original estimation of item parameters and of the

functionsh,v (U.=1.114.=(),y) requires similar modifications to
3

standard item parameter estimation algorithms. Additional
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parametersforh0 ,y) can be estimated jointly with
j

standard item parameters; a plausible implementation would make

the logits of h's associated with each item linear in 0.

Lord's (1983) model for omits. While Lord's (1974)

treatment of omits as fractionally correct yields reasonable and

statistically defensible (conditional) MLEs of 8 when rational

omitting behavior is assumed, the full likelihood induced by the

data was neither presented nor exploited. To accomplish this

requires an explication of the missingness process, in the form of

a model for the joint probability distribution of U and M. Such a

model was proposed by Lord (1983).

Lord's (1983) model for omits maintains the context of

guessing-corrected scoring of multiple-choice items with A(= l/c)

alternatives, but offers additional structure for the response

process. It is first assumed that an examinee either feels a

preference for one of the alternatives or is totally undecided

among them. The proportion of examinees with ability 0 feeling

nopreferenceonItemjisR.(0). If a preference is felt, a

response is made; of the responses made by examinees with ability

0 who feel a preference, the proportion correct is P (0).

preference is felt, the examinee will either omit the item with

probability or respond completely at random. Responses and

omitting decisions are again assumed to be independent from one

item to the next, conditional on 0 and w.

If no
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These assumptions imply that the missingness parameter 0 is

(0,w), and lead to the following forms for t (m.) and h
0

(u.lm.):
0 J J J

and

1-m. m.

t (n.) == (4) FL(0) J1 [1 wR.(0)] 3
J

h
0
(u

j
1m

j
)

U. 1-u.

(1 - c) 3 = 0
3

** U. ** 1-u.

P. (0) J1.1 (0)] if m. =
3 3

where P**. (0) = P(U.--110,m.=1), the conditional probability that an
3

observed response will be corre-x, is the sum of the probabilities

of responding correctly when a preference is felt and guessing

correctly when a preference is not felt:

**
P. (0) = [1 R.(0)] P.(0) + c(1 - w)R.(0)

3 3

The joint likelihood for 0 and w induced by v (i.e., u
obs

and m)

is thus
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._ n

L(0,w1v) - t(m) j II yuilmi) dumis
j

1

- t (m) fl h (u.1M. - 1) j II h (u.1M. - ())du .

0 0 J Jobs mis
mis

9 .1 J

n 1-m. m. u. ** j
1-u.

J
** 1

- IlkA.(0)]3[1-(A.(0))111).-'(0)Q. (0) .

j 3
3 obs J J

(18)

*
Assuming the functions P and R are known, (18) provides a basis

for full-information inference about 0. Under maximum

likelihood, the joint maximum for (0,w) may be found by standard
.

numerical methods, and a large-sample variance estimate can be

based on the inverse of the second derivative of the log of (18)

with respect to 0 and w. Under Bayesian inference, the posterior

for 0 and w is obtained by multiplying (18) by p(0,w) and

normalizing; from this point, one may examine characteristics of

the joint posterior for 0 and w, or integrate w out to obtain the

marginal posilerior for 0.

Lord suggests that this model might be implemented by

specifying functional forms for P
*

and R, e.g., the 3-parameter

logistic IRT function for P
*

and the 2-parameter logistic with a

negative slope for R. The underlying model for the correctness of

item responses, observed or not, can be written as a function of

*
P and R as follows:
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P(U.-110,w)

=P(U.-110,w,14.---1)1)(14.=11B,w)+M.-110,w,M.--0) P(M..-010,w)

--(c0--(-0R-(0)+0--Ft.OMP.(0)} [1 wR.(0)] + cwR.(0) .

3

Note that this probability depends on w as well as 0; thus, the

underlyingmodelforitemresponsesThis not a standard IRT model
3

depending on 0 alone and exhibiting local independence. This

would be true only if for each value of 0, all examinees with that

0 had the same value of w. A special case of this requirement is

for all examinees at all values of 0 to have the same value of w.

Lord points out that if this were so with w 0--i.e., no

propensity toward omitting, even when no preference is felt--the

resulting IRT model would be

134(0) = 1?.(0) [1 R.(0)] + c R.(0) .

In a manner described by Samejima (1979), a response curve of

this form need not be monotonically increasing over the range of

G. High-ability examinees would tend to feel preferences and

respond correctly; moderate-ability examinees might tend to feel a

preference for a clever distractor and answer incorrectly at a

rate lower than c; very low ability examinees would feel no

preference at all, and answer correctly at a rate equal to c.
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Nominal category models. IRT models for multiple-category

items have bean proposed by Bock (1972), Samejima (1979), Sympson

(1983), Thissen and Steinberg (1986), and others. These models

have sometimes been used for data with intentional omissions,

with an omit treated as one more possible response to a multiple-

choice item. Lord (1983) expresses reservations about this

practice,

"...since it treats probability of omitting as dependent
only on the examinee's ability, whereas it actually
depends on a dimension of temperament. It seems likely

that local unidimensional independence may not hold."

(p. 477)

The following analysis makes Lord's concerns more explicit.

The features of the approach regarding omission are retained

when all overt incorrect responses are collapsed into a single

category. Recalling that the values 0, 1, and * of v stand for

observed wrong, observed right, and omit, we obtain the multiple-

category model probabilities f
*

as follows:
0

and

fo(li=0)=P(U.=0,M. = 110)

- 5 fo(Uj - 0) g(Mj 111Jj - 0,04) p(010) dO ;

f(1.-1)-13(1).--1,M. - 110)
0 j

fo(Uj - 1) g(Mj - 111Jj - 1,04) p(010) dO ;

t.7



fo(Vj = )k) 0,14. =OP) P(U. -010)

=5 f(U.-1)04.-01U. = 1,8,0) p(018) d0
8 j

4-ff(U--0)04---(*.",0,0) p(010) dO
j

Under the assumption of "extended local independence,"

p(U = u,M = m18,0) = R p(U. = u.,M. = m.10,0) .

J J

This implies

p(V = v10,0) = H p(V. = v.10,0) .

J J

Using (19),

p(V = v10) = f p(V = v18,0) p(010) d0

(19)

f II p(V. = v.10,0) p(010) d0 . (20)
j J J

But for local independence to hold in the usual sense for the

multiple-category model, it would be necessary that
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p(V 1,10) ii I p(V. v.I0,0) p(010) d0 ,

J J

and this does not generally follow from (20) as the order of

multiplication and integration has been interchanged. It does

follow if for each 0 value, 0 takes the same value for all

examinees with that 0 value; that is, the variables of the

omitting process may vary from one value of 0 to another, but not

among examinees with the same value of 0. Lord's objection, then,

may be stated as a desire to allow for different propensities for

omitting to occur within a given level of ability.

A second reservation that might be offered for this approach

stems from the fact that probabilities for v given 0 are averages

over 0. Even if (i) fo(u) is an IRT model satisfying local

independence and (ii) fo(u) go(miu) satisfies extended local

independence, the multiple-category response curves f(v) will

vary from one group of examinees to the next unless the

conditional distributions p(010) are invariant over groups.

How to model omits, if you must. Standard IRT concerns

examinees' tendencies to make correct responses when omits cannot

occur. When they can occur, the differences among examinees'

tendencies to omit responses can be cast as a nuisance variable in

the classic sense. It is often easier to deal with such

extraneous influences at the time the data are collected than to

model them after the fact. In aptitude and ability testing, we

should inform examinees as clearly as possible how their
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performance will be evaluated, and persuade them as convincingly

as possible to use the omitting strategy that maximizes their

expected score. To the degree we succeed, variation in 0 is

reduced and examinees' data differ mainly because of differences

in 0. If too the proportion of omits is low, imputing

fractionally-correct or even random responses at the level c

yields inferences that are plausible, readily-calculable, and

robust with respect to alternative models for omitting.

For the sake of completeness, however, we now outline an

approach using a full model for response and omission. The model

exhibits local independence for elements of U given 0, and

extended local independence for elements of (U,M) given (0,0).

Its implementation requires either that g is assumed to be known

or that an experiment with the same items and similar examinees

has revealed the values of item responses that were originally

omitted. We assume here that the experiment has been carried out,

and a complete data matrix (u,m) is available for a sample of

examinees from a population of interest.

An IRT model f
9
(U = u,0,0) is assumed for item responses.

The missingness process is modeled in terms of functions

n.) for each item, where n. are now

additional item parameters for the frequency with which the item

is omitted. For example, we could estimate from the completed

datasetitem-omittingparameters nj .-(diwejo,dii,ejl) that give

thelogitregressiohofm.on 0 when u. 0 and when u. 1; that

is,
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Logit P(4. 0113. 0,0,q.) djo 0 + ejo

logit ETC ,

3 3
dji 0 + ejl

where logit P = log(P/(1 - P)). The examinee omitting parameter 0

could then be a tendency to omit more or less than average, so

that

logitP(M.=01U.=0,0,0m.)=d.0+ e. + 0
3 3 3 JO JO

logit P(M. .= 01U. = = 0 + e. + 0 .

3
nj dil

ji

The complete-data likelihood function for the item parameters is

L(0,n1u,m)

ff f0(ui10,0) h(milui3O,0,7) p(0,0) d0 dO . (21)

Equation (21) provides a basis for estimating (0,0 from the

experimental data, either directly via maximum likelihood or,

after multiplication by a prior distribution, via Bayesian
A A

methods. Maximum likelihood yields point estimates (0,);

Bayesian methods yield the posterior distribution p(9,n1u,m).

Estimating the examinee parameter distribution p(0,0) at the same
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time might also be desirable, say by positing a functional form

and estimating its parameters.

The results of this calibration can then be used to estimate

the 0 value of new examinee i, from whom only vi is observed.

Under Bayesian inference, the relevant posterior distribution is

p(Olv.,u,m) a
1

fff vvil9,003,0 p(Mniu,m) p(0,0) dO dn d0 .

A A

Under maximum likelihood inference, the maximizing value (0,0)
,. .,

L(0,01vi3O=0,n=n) might be sought.

Inferences about Item Parameters

When not all item responses are observed, the (marginal)

likelihood function for item parameters )9 induced by the data

matrix v = (v1,...,vN) from a sample of N examinees is

L(lv)

N

= II fff p(u .

obs,i i
,u ,m.10,0,0 du

mis,i
p(0,0) d0 4

mis,1
i

N

11 ff p(vi10,009) p(0,0) dO 4 ,
i

(22)



whereuobs,iandu..are the observed and missing portions of
mis,i

the response vector of examinee i. The psuedo-likelihood obtained

by ignoring the missingness process is

-
*

L (tIuobs) p(u
obs,i

10,p) p(0) d0 . (23)

Ignoring the missingness process when making direct

likelihood inferences about 0 means comparing the values of (23)

rather than (22) at different values of 0. Equation (22) differs

from (23) by integrating over p(uobs l03)
with respect to 0 fori4,

each examinee, rather than over p(vil0,043) with respect to 0 and

0. The resulting integrals are proportional with respect to 0 if

and only if for all values of 0, the conditions for ignorability

for 0 given 0 are satisfied for Bayesian inference. Therefore,

o Ignorability under direct (marginal) likelihood inference
about 0 holds if (i) ignorability under Bayesian inference
holds for each 0 conditional on 0, and (ii) 0, 0, and 0 are
distinct in the sense required for direct likelihood
inference.

If 0 is a priori independent of all 0 and 0, the correct

Bayesian posterior for fi in the presence of missing data is the

product of (22) and the prior p(0). Ignoring the missingness

process when making Bayesian inferences about 0 means using

instead the product of (23) and p(#). The preceding result

indicates when ignoring the missingness gives the correct

likelihood. To obtain the correct posterior, then, we have:
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o Ignorability holds under Bayesian inference about 0 if (i)
ignorability holds under Bayesian inference for each 0
conditional on 0, (ii) 0, 0, and 0 are distinct in the sense
required for Bayesian inference.

*
If ignorability holds under direct likelihood inference, L

yields the correct value for 0. The necessary condition for

sampling distribution inferences based on 0 requires that the

probability of the missingness pattern--in this context, the

distribution of counts of individual missingness patterns--not

depend on the values of observed responses. This condition is

implied by MCAR. When it and direct-likelihood ignorability hold,

conditional sampling distribution inferences are appropriate.

They pertain to sampling of item responses to the observed items

from repeated subsamples of examinees with each observed

missingness pattern, with subsample sizes fixed at the observed

counts of those missingness patterns.

Case 1. We have seen that for alternate test forms,

ignorability holds for Bayesian inferences about 8 given 0.

Random assignment of test forms ensures MCAR. Therefore the

responses to items on forms that are not administered can be

ignored under direct likelihood inference about 0, and under

Bayesian inferences as well as long as prior distributions are

independent. Sampling-distribution inferences can based on the

MLE 0 with the understanding that they pertain to repeated

sampling of examinees for each form in the sample sizes that were

actually observed.
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Case 2. In targeted testing, items believed to be easier

are administered to examinees that are expected to have lower

abilities, and items believed to be hal-der are administered to

examinees expected to have higher abilities. Bayesian inferences

about 0 given 0 can ignore missingness only after conditioning on

y, the collateral examinee variable used in test-form assignment.

Correct inferences about p under direct likelihood inference thus

require that p(0) in (23) be replaced by p(Olyi), as well as that

all values of p are possible (if not always likely) on all test

forms. Bayesian inferences must additionally take into account

the prior beliefs that led to the differential assignment of items

to forms. Let z = (z1,...,zn) represent the collateral

information about items used to make these assignments (e.g.,

pretest item difficulties or item content). Appropriate Bayesian

inferences about 0 that account for the missingness process may be

drawn from

*

13(19111013S,Y,Z) a L (filuobs,y) 13(61z).

As in Case 1, the distribution of counts of missingness patterns

does not depend on the values of observed item responses, so

conditional sampling-distribution inferences about /3 from

L "luobs'y) are
appropriate. They pertain to repeated

administrations of the observed counts of administered forms at

each value of y, to samples of examinees with those y values.
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Case 3. Conclusions similar to those of Case 2 hold for

direct likelihood and Bayesian inference in adaptive testing.

Ignorability holds for Bayesian inference about 0 given /3 (again

conditioning on y if collateral examinee variables are used in

*
item selection), so direct likelihood inferences about # from L

are justified (Verhelst and Veldhuijzen, 1987)--though not always

satisfactory. The reason is that p(filz) is often very strong in

practice; indeed, /3 is usually treated as known for the purpose of

_
itemselection.Inthiscase,couldbethernean.andzj pj

covariancematrixofanassumednormaldistributionfor.,andfii

_
itemselectionwouldbebasedon 03 ..The data collected for a

given item when it is administered adaptively tend to be from

examinees in a relatively narrow band of ability. For binary

items with more than one parameter, the number of examinees

required for stable estimates may well exceed the number that can

be tested in practice. Bayesian inference is preferable under

these circumstances. Provisional item parameter estimates based

on p(piz) may be used to administer items, then

adaptively-acquired item responses can be used to produce an

updated distribution

*

P(/31z,110bs) a L (uobsl° p(fl(z)

Because the missingness process is ignorable under direct
A

likelihood inference, the usual MLE 0 obtained by maximizing L
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gives the correct point estimate for MLE-based sampling-

distribution inferences about fi. As in the section on estimating

0 from adaptive tests, however, the necessary condition for

ignorability under sampling-distribution inference is not

satisfied--the probabilities of missingness patterns depends on

the values of observed responses. MLE properties based on L
*

need

not apply to item parameter estimates obtained from adaptive test

data. It may be that for some adaptive test designs, the usual
-

variance estimates with m fixed at m are good approximations to

the variances that would be obtained under repeated sampling of

the entire adaptive test for N examinees, but this must be

determined case by case.

Case 4. Recall that when some items at the end of a test are

not reached, MAR holds for inferences about 8 given /3 but Bayesian

ignorability does not hold unless speed and ability are

independent. Missingness due to time limitations, therefore, is

not generally ignorable under any type of inference about p.

Assuming there are no restrictions on the parameter space, drawing

likeli.hood inferences about p requires one to replace p(0) in (22)

with p(Olmi), where

13(01mi) a p(9) f p(M mi10) p(010) dO .

If, in addition, the test has been assembled to start with easy

items and become harder, the prior information about items [say
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p(filz) = II p(pily] will be related to the chances that

examinees will not reach particular items. This information must

also be used in Bayesian inference about p. The appropriat,:

posterior is

p(filv,z) a p(filz) II f f0 (uobs,i1P) p(Olmi) d0 .

Case 5. The topic of inference about item parameters when

examinees omit some items intentionally has already been broached

in the discussion about estimating 0. Bayesian ignorability for

0 given /3 does not generally hold, so missingness mechanisms must

be specified and inferences about ,8 must start with on the full

likelihood (23). A number of approaches were discussed there,

including imputing responses for omits, using a multiple-category

IRT model, and fitting Lord's (1983) model for responses and

omits. The approach that is most easily incorporated into

standard IRT algorithms is to treat intentional omits as

fractionally correct (Lord, 1974). Assuming that examinees omit

only in accordance with the strategy that maximizes their expected

score, this approach gives "marginal-conditional" MLEs that

maximize

E[Lu(filumis, 'obsduobs,m)
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II f n
i obs.

1

P.(9)
3

u..

13 Q .09)

1-u..

13 H
mis.

1

1-c
p. (0)c .0) p(0) d0

.3

Q3

(24)

Equation (24) is "conditional" in that it accounts for the

influence of 0 upon item responses given the pattern of

missingness, but does not capture the role of 0 in determining

that pattern. It is "marginal" in that it is the expectation over

U . given u
obs and m of the conditional likelihood L

u
Ulu) thatmIs

would be maximized if all responses had been observed.

Summary

In practical applications of item response theory (IRT),

there are several reasons that item responses may not be observed

from all examinees to all test items. Ignoring the missingness

process under direct likelihood inference means using a psuedo-

likelihood that includes terms for only the responses that were

observed, without regard for the processes by which they came to

be observed. The resulting inferences are appropriate if the

psuedo-likelihood is proportional to the correct likelihood that

does account for the missingness process. In this case the

correct point est-Ulate of an MLE is obtained. Sampling-

distribution inferences from the MLE are appropriate only if the

missingness pattern does not depend on the values of the observed

data. When this condition holds, sampling-distribution inferences

can be drawn with regard to repeated samples of responses under
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the observed pattern of missingness. The missingness process is

ignorable with respect to Bayesian inference if the correct

Bayesian posterior is proportional to the product of the

psuedo-likelihood and an appropriate prior distribution.

For fives common types of missingness in IRT, we used Rubin's

(1976) theorems to determine whether ignorability holds under

direct likelihood and Bayesian inference about examinee parameters

0 when item parameters 0 are known. In those cases in which the

correct value of the MLE is obtained under direct likelihood

inference, we asked whether sampling distribution inferences based

on the MLE were appropriate. We then considered the analogous

questions for inferences about 0 when the examinee parameters are

eliminated by marginalization. Our findings are summarized below.

Tables 1 and 2 highlight the results on ignorability.

Case 1: Alternate test forms. When an examinee is assigned one of

several alternative test forms by a random process such as a coin

flip or a spiralling scheme, the process that renders missing the

responses to items on the forms not presented is ignorable for all

three types of inference, both for estimating 0 and for estimating

0 when 0 is known.

Case 2: Targeted testing. When collateral variables such as

educational or demographic status are used to assign an examinee

one of several tests that differ in their measurement properties,

the resulting missingness on forms not given is ignorable under

direct likelihood
inference for 0 given 0, but not under Bayesian
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inference unless the prior information about examinees that led to

differential assignments is conditioned on. This information must

be taken into account for both likelihood and Bayesian inferences

about 0; for Bayesian iaference, prior information about 19 used to

select items must additionally be taken into account. Sampling

distribution inferences may be based on MLEs for 0 and for 0 given

19, conditional on the observed patterns of test form

administration within values of the examinee variables used for

targeting.

Case 3: Adaptive testing. The same conclusions for direct

likelihood and Bayesian inference follow in adaptive testing,

where assignment proceeds item by item in accordance with the

values of responses to preceding items. Ignorability under direct

likelihood inference means that the correct points are identified

as MLEs of 0 given 0 and of 19, but the usual MLE properties under

sampling-distribution inference need not hold because the

probabilities of missingness patterns depend on the values of

observed responses.

Case 4: Not-reached items. When some examinees do not interact

with the last items on a nearly nonspeeded test, the not-reached

process is ignorable with respect to direct likelihood inference

about 0 given (I, and the MLE supports sampling distribution

inferences that pertain to repeated administrations of the items

that were actually reached. ThiS missingness process is not

ignorable under Bayesian inference unless speed and ability are
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independent. And only then can direct (marginal) likelihood

inferences about 0 ignore the missingness. Bayesian inferences

about /3 further require that prior knowledge about item parameters

be employed if it played a role in determining which items would

not be reached, as when items are ordered from easy to hard.

Case 5: Omitted items. When examinees are presented items, have a

chance to appraise their content, and decide for their own reasons

not to respond, the missingness is not ignorable. Inferences must

be drawn from a full model for the joint distribution of

missingness and item response.

Not surprisingly, modeling this nonignorable nonresponse is

difficult. Neither of the two most ambitious approaches proposed

to date, namely Lord's (1983) model for omits and the use of

multiple-category IRT models, handles the issue of local

independence in a fully satisfactory manner. Under the

assumption that examinees are perfect judges of their chances of

responding correctly, and omit only if it is in accordance with

the strategy that maximizes their expected score, Lord's (1974)

treatment of omits as fractionally correct can be justified as

providing the expectation of a conditional term in the full

likelihood. This procedure is readily incorporated into standard

complete-data IRT algorithms and avoids having to specify the

full likelihood, but sacrifices information about examinee and

item parameters conveyed by the observed pattern of missingness.
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Table I

Ignorability Results for Estimating 0 Given 19

SS..-S-SSSUSSSSS SiSss ...... SSS

Type of
Type of Inference

Missingness Direct Likelihood Bayesian Sampling Distribution

Alternate
Forms

Targeted
Forms

Adaptive
Testing

Not-Reached

Intentional
Omissions

S SS

*

Yes Yes Yes

Yes Yes, given Yes

examinee variables

Yes Yes, given No

examinee variables
if they are used

Yes

No

No, unless speed and Yes

ability are independent

No No

Conditional on the observed pattern of missingness.

65

S= .

117



Table 2

Ignorability Results for Estimating # After Marginalizing over 0

Type of
Missingness

========

Type of Inference

Direct Likelihood Bayesian Sampling Distribution

Alternate
Forms

Targeted
Forms

Adaptive
Testing

Not-Reached

Intentional
Omissions

Yes Yes Yes

Yes, given Yes, given Yes, given
examinee variables examinee and item examinee variables

variables

Yes, given
examinee variables
if they are used

No, unless speed
and ability are

independent

No

Yes, given
item variables and
examinee variables
if they are used

No

No, unless speed No, unless speed
and ability are and ability are

independent independent

No No

Conditional on the observed pattern of missingness.
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